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Abstract

High-level actions (HLAs) are essential tools for coping with the large search spaces and long decision
horizons encountered in real-world decision making. In a recent paper, we proposed an “angelic” semantics
for HLAs that supports proofs that a high-level plan will (or will not) achieve a goal, without first reducing the
plan to primitive action sequences. This paper extends the angelic semantics with cost information to support
proofs that a high-level plan is (or is not) optimal. We describe the Angelic Hierarchical A* algorithm, which
generates provably optimal plans, and show its advantages over alternative algorithms. We also present the
Angelic Hierarchical Learning Real-Time A* algorithm for situated agents, one of the first algorithms to do
hierarchical lookahead in an online setting. Since high-level plans are much shorter, this algorithm can look
much farther ahead than previous algorithms (and thus choose much better actions) for a given amount of
computational effort. This is an extended version of a paper by the same name appearing in ICAPS ’08.

1. Introduction
Humans somehow manage to choose quite intelligently the twenty trillion primitive motor commands that
constitute a life, despite the large state space. It has long been thought that hierarchical structure in behavior
is essential in managing this complexity. Structure exists at many levels, ranging from small (hundred-step?)
motor programs for typing characters and saying phonemes up to large (billion-step?) actions such as writing
an ICAPS paper, getting a good faculty position, and so on. The key to reducing complexity is that one can
choose (correctly) to write an ICAPS paper without first considering all the character sequences one might
type.

Hierarchical planning attempts to capture this source of power. It has a rich history of contributions (to
which we cannot do justice here) going back to the seminal work of Tate (1977). The basic idea is to supply
a planner with a set of high-level actions (HLAs) in addition to the primitive actions. Each HLA admits one
or more refinements into sequences of (possibly high-level) actions that implement it. Hierarchical planners
such as SHOP2 (Nau et al., 2003) usually consider only plans that are refinements of some top-level HLAs for
achieving the goal, and derive power from constraints placed on the search space by the refinement hierarchy.

One might hope for more; consider, for example, the downward refinement property: every plan that
claims to achieve some condition does in fact have a primitive refinement that achieves it. This property would
enable the derivation of provably correct abstract plans without refining all the way to primitive actions,
providing potentially exponential speedups. This requires, however, that HLAs have clear precondition–
effect semantics, which have until recently been unavailable (McDermott, 2000). In a recent paper (Marthi
et al., 2007) — henceforth (MRW ’07) — we defined an “angelic semantics” for HLAs, specifying for each
HLA the set of states reachable by some refinement into a primitive action sequence. The angelic approach
captures the fact that the agent will choose a refinement and can thereby choose which element of an HLA’s
reachable set is actually reached. This semantics guarantees the downward refinement property and yields

∗. The authors appear in alphabetical order.
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a sound and complete hierarchical planning algorithm that derives significant speedups from its ability to
generate and commit to provably correct abstract plans.

Our previous paper ignored action costs and hence our planning algorithm used no heuristic information,
a mainstay of modern planners. The first objective of this paper is to rectify this omission. The angelic
approach suggests the obvious extension: the exact cost of executing a high-level action to get from state s to
state s′ is the least cost among all primitive refinements that reach s′. In practice, however, representing the
exact cost of an HLA from each state s to each reachable state s′ is infeasible, and we develop concise lower
and upper bound representations. From this starting point, we derive the first algorithm capable of generating
provably optimal abstract plans. Conceptually, this algorithm is an elaboration of A*, applied in hierarchical
plan space and modified to handle the special properties of refinement operators and use both upper and lower
bounds. We also provide a satisficing algorithm that sacrifices optimality for computational efficiency and
may be more useful in practice. Preliminary experimental results show that these algorithms outperform both
“flat” and our previous hierarchical approaches.

The paper also examines HLAs in the online setting, wherein an agent performs a limited lookahead prior
to selecting each action. The value of lookahead has been amply demonstrated in domains such as chess.
We believe that hierarchical lookahead with HLAs can be far more effective because it brings back to the
present value information from far into the future. Put simply, it’s better to evaluate the possible outcomes
of writing an ICAPS paper than the possible outcomes of choosing “A” as its first character. We derive an
angelic hierarchical generalization of Korf’s LRTA* (1990), which shares LRTA*’s guarantees of eventual
goal achievement on each trial and eventually optimal behavior after repeated trials. Experiments show that
this algorithm substantially outperforms its nonhierarchical ancestor.

2. Background
2.1 Planning Problems

Deterministic, fully observable planning problems can be described in a representation-independent manner
by a tuple (S, s0, t,L, T, g), where S is a set of states, s0 is the initial state, t is the goal state,1 L is a set
of primitive actions, and T : S × L → S and g : S × L → R+ are transition and cost functions such that
doing action a in state s leads to state T (s, a) with cost g(s, a).2 These functions are overloaded to operate on
sequences of actions in the obvious way: if a = (a1, . . . , am), then T (s,a) = T (. . . T (s, a1) . . . , am) and
g(s,a) is the total cost of this sequence. The objective is to find a solution a ∈ L∗ for which T (s0,a) = t.

Definition 1. A solution a∗ is optimal iff it reaches the goal with minimal cost:

a∗ = arg mina∈L∗:T (s0,a)=t g(s0,a).

We assume the state and action spaces are finite. To ensure that optimal solutions exist, we also assume
that there is at least one finite-cost solution, and every cycle in the state space has positive cost. In this
paper, we will represent S as the set of truth assignments to some set of ground propositions, and T using the
STRIPS language (Fikes and Nilsson, 1971).

As a running example, we introduce a simple “nav-switch” domain. This is a grid-world navigation do-
main with locations represented by propositions X(x) and Y(y) for x ∈ {0, ..., xmax} and y ∈ {0, ..., ymax},
and actions U, D, L, and R that move between them. There is a single global “switch” that can face horizon-
tally (H) or vertically (¬H); move actions cost 2 if they go in the current direction of the switch and 4
otherwise. The switch can be toggled by action F with cost 1, but only from a subset of designated squares.
The goal is always to reach a particular square with minimum cost. Since these goals correspond to 2 distinct
states (H, ¬H), we add a dummy action Z with cost 0 that moves from these (pseudo-)goal states to the
single terminal state t. For example, in a 2x2 problem (xmax = ymax = 1) where the switch can only be
toggled from the top-left square (0, 0), if the initial state s0 is X(1)∧Y(0)∧H, the optimal plan to reach the
bottom-left square (0, 1) is (L, F, D, Z) with cost 5.

1. A problem with multiple goal states can easily be translated into an equivalent problem with a single goal state.
2. R+ denotes the set R ∪ {∞}
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2.2 High-Level Actions

In addition to a planning problem, our algorithms will be given a set A of high-level actions, along with a
set I(a) of allowed immediate refinements for each HLA a ∈ A. Each immediate refinement consists of a
finite sequence a ∈ Ã∗, where we define Ã = A∪L as the set of all actions. Each HLA and refinement may
have an associated precondition, which specifies conditions under which its use is appropriate.3 To make a
high-level sequence more concrete we may refine it, by replacing one of its HLAs by one of its immediate
refinements, and we call one plan a refinement of another if it is reachable by any sequence of such steps.
A primitive refinement consists only of primitive actions, and we define I∗(a, s) as the set of all primitive
refinements of a that obey all HLA and refinement preconditions when applied from state s. We assume no
plan is a refinement of itself. Finally, we assume a special top-level action Act∈A, and restrict our attention
to plans in I∗(Act, s0).

Definition 2. (Parr and Russell, 1998) A plan ah∗ is hierarchically optimal iff

ah∗ = arg mina∈I∗(Act,s0):T (s0,a)=tg(s0,a).

Remark. Because the hierarchy may constrain the set of allowed sequences, g(s0,ah∗) ≥ g(s0,a∗).

When equality holds from all possible initial states, the hierarchy is called optimality-preserving.
The hierarchy for our running example has three HLAs: A = {Nav, Go, Act}. Nav(x, y) navigates

directly to location (x, y); it can refine to the empty sequence iff the agent is already at (x, y), and otherwise
to any primitive move action followed by a recursive Nav(x, y). Go(x, y) is like Nav, except that it may
flip the switch on the way; it either refines to (Nav(x, y)), or to (Nav(x′, y′), F, Go(x, y)) where (x′, y′) can
access the switch. Finally, Act is the top-level action, which refines to (Go(xg, yg), Z), where (xg, yg) is the
goal location. This hierarchy is optimality-preserving for any instance of the nav-switch domain.

3. Cost-Based Descriptions of HLAs
As mentioned in the introduction, our angelic semantics (MRW ’07) describes the outcome of a high-level
plan by its reachable set of states (by some refinement). However, these reachable sets say nothing about
costs incurred along the way. This section describes a novel extension of the angelic approach that includes
cost information. This will allow us to find good plans quickly by focusing on better-seeming plans first, and
pruning provably suboptimal high-level plans without refining them further.

We begin with the notion of an exact description Ea of an HLA a, which specifies, for each pair of states
(s, s′), the minimum cost of any primitive refinement of a that leads from s to s′ (this generalizes the original
definition from (MRW ’07)).

Definition 3. The exact description of HLA a is a function Ea(s)(s′) = minb∈I∗(a,s):T (s,b)=s′ g(s,b).

Remark. Note that the set of primitive refinements may be infinite. The minimum must still be attained,
however, due to the finiteness and positive-cycle assumptions.

Remark. Definition 3 implies that if s′ is not reachable from s by any refinement of a, Ea(s)(s′) = ∞.

Definition 4. A valuation is a function v : S → R+. The initial valuation v0 has v0(s0) = 0 and v0(s) = ∞
for all s 6= s0.

We can think of descriptions as functions from states to valuations that specify a reachable set plus a finite
cost for each reachable state (see Figure 1(b)). Then, descriptions can be extended to functions from valua-
tions to valuations, by defining Ēa(v)(s′) = mins∈S v(s) + Ea(s)(s′). Finally, these extended descriptions
can be composed to produce descriptions for high-level sequences.

3. We treat these preconditions as advisory, so for our purposes a planning algorithm is complete even if it takes them into account,
and sound even if it ignores them.
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Definition 5. Given a sequence a = (a1, . . . , aN ), the exact transition function of a is a function mapping
valuations to valuations: Ēa = ĒaN

◦ . . . ◦ Ēa1 .

Theorem 1. For any integer N , final state sN , and action sequence a ∈ ÃN , the minimum over all state
sequences (s1, ..., sN−1) of total cost

∑N
i=1 Eai

(si−1)(si) equals Ēa(v0)(sN ). Moreover, for any such mini-
mizing state sequence, concatenating the primitive refinements of each HLA ai that achieve the minimum cost
Eai

(si−1)(si) for each step yields a primitive refinement of a that reaches sN from s0 with minimal cost.

Proof. The proof is by induction. When N = 1, the theorem follows trivially from Definitions 3 and 4.
When N > 1,

min
(s1,...,sN−1)

N∑
i=1

Eai
(si−1)(si) = min

(s1,...,sN−1)

(
EaN

(sN−1)(sN ) +
N−1∑
i=1

Eai
(si−1)(si)

)

= min
sN−1

(
EaN

(sN−1)(sN ) + min
(s1,..,sN−2)

N−1∑
i=1

Eai
(si−1)(si)

)
= min

sN−1

(
EaN

(sN−1)(sN ) + ĒaN−1 ◦ . . . ◦ Ēa1(v0)(sN−1)
)

= ĒaN
◦ . . . ◦ Ēa1(v0)(sN )

By this theorem, an efficient, compact representation for Ea would (under mild conditions) lead to an
efficient optimal planning algorithm. Unfortunately, since deciding even simple plan existence is PSPACE-
hard (Bylander, 1994), we cannot hope for this in general. We will therefore consider principled compact
approximations to Ea that still allow for precise inferences about the effects and costs of high-level plans.

3.1 Optimistic and Pessimistic Bounds on Descriptions

Definition 6. A valuation v1 (weakly) dominates another valuation v2, written v1 � v2, iff
(∀s ∈ S) v1(s) ≤ v2(s).

Definition 7. An optimistic description Oa of HLA a satisfies (∀s) Oa(s) � Ea(s).

For example, our optimistic description of Go (see Figure 1(a/c)) specifies that the cost for getting to
the target location (possibly flipping the switch on the way) is at least twice its Manhattan distance from the
current location; moreover, all other states are unreachable by Go.

Definition 8. A pessimistic description Pa of HLA a satisfies (∀s) Ea(s) � Pa(s).

For example, our pessimistic description of Go specifies that the cost to reach the destination is at most
four times its Manhattan distance from the current location.

Remark. For primitive actions a ∈ L, Oa(s)(s′) = Pa(s)(s′) = g(s, a) iff s′ = T (s, a),∞ otherwise.

Optimistic and pessimistic descriptions generalize our previous complete and sound descriptions (MRW
’07). In this paper, we will assume that the descriptions are given along with the hierarchy. However, we note
that it is theoretically possible to derive them automatically from the structure of the hierarchy.

As with exact descriptions, we can extend optimistic and pessimistic descriptions and then compose
them to produce bounds on the outcomes of high-level sequences, which we call optimistic and pessimistic
valuations (see Figure 1(c/d)).

Theorem 2. Given any sequence a ∈ ÃN and state s, the cost c = minb∈I∗(a,s0)|T (s0,b)=s g(s0,b) of the
best primitive refinement of a that reaches s from s0 satisfies ŌaN

◦ . . . ◦ Ōa1(v0)(s) ≤ c ≤ P̄aN
◦ . . . ◦

P̄a1(v0)(s).
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(a) Properties of HLA Go(xt, yt) (precondition X(xs) ∧ Y(ys))
refs (Nav(xt, yt))

(Nav(x, y), F, Go(xt, yt)) (∀x, y) s.t. a switch at (x, y)
optimistic −X(xs), −Y(ys), +X(xt), +Y(yt), ±̃H

cost ≥ 2 ∗ (|xt − xs|+ |yt − ys|)
pessimistic −X(xs), −Y(ys), +X(xt), +Y(yt)

cost ≤ 4 ∗ (|xt − xs|+ |yt − ys|)

∞ ∞

6 ∞

∞ ∞

5 ∞

6

8

7

5

(b) (c) (d)

10
...

∞ ∞

4 ∞

∞ ∞

4 ∞

∞ ∞

8 ∞

∞ ∞

∞ ∞

Figure 1: Some examples taken from our example nav-switch problem. (a) Refinements and NCSTRIPS
descriptions of the Go HLA. (b) Exact valuation from s0 for Go(0, 1). Gray rounded rectangles
represent the state space; in the top four states (circles) the switch is horizontal, and in the bottom
four it is vertical. Each arrow represents a primitive refinement of Go(0, 1); the cost assigned to
each state is the min cost of any refinement that reaches it. The exact reachable set corresponding
to this HLA is also outlined. (c) Optimistic simple valuation X(0)∧¬X(1)∧¬Y(0)∧Y(1) : 4 for
the example in (b), as would be produced by the description in (a). (d) Pessimistic simple valuation
X(0) ∧ ¬X(1) ∧ ¬Y(0) ∧ Y(1) ∧ H : 8.

Proof. The theorem is equivalent to the assertion that ŌaN
◦ . . . ◦ Ōa1(v0) � ĒaN

◦ . . . ◦ Ēa1(v0) �
P̄aN

◦ . . . ◦ P̄a1(v0)(sN ). When N = 1, this follows trivially from Definitions 7 and 8. When N > 1, for
optimistic descriptions (the pessimistic case is symmetric):

ŌaN
◦ . . . ◦ Ōa1(v0)(sN ) = min

sN−1
OaN

(sN−1)(sN ) + ŌaN−1 ◦ . . . ◦ Ōa1(v0)(sN−1)

≤ min
sN−1

EaN
(sN−1)(sN ) + ĒaN−1 ◦ . . . ◦ Ēa1(v0)(sN−1)

= ĒaN
◦ . . . ◦ Ēa1(v0)(sN )

Moreover, following Theorem 1, these are the tightest bounds derivable from a set of optimistic and
pessimistic descriptions.

The reader might wonder what descriptions are appropriate for Act. Since the agent cannot stop acting
until it reaches the goal state, Act’s pessimistic descriptions cannot assign finite cost to any outcome other
than t. Moreover, the optimistic cost to t for Act will be our normal notion of an admissible heuristic, which
could be automatically derived from a relaxed version of the problem (e.g., a planning graph).

3.2 Representing and Reasoning with Descriptions

Whereas the results presented thus far are representation-independent, to utilize them effectively we require
compact representations for valuations and descriptions as well as efficient algorithms for operating on these
representations.

In particular, we consider simple valuations of the form σ : c where σ ⊆ S and c ∈ R+, which specify
a reachable set of states along with a single numeric bound on the cost to reach states in this set (all other
states are assigned cost∞). As exemplified in Figure 1(c/d), an optimistic simple valuation asserts that states
in σ may be reachable with cost at least c, and other states are unreachable; likewise, a pessimistic simple
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valuation asserts that each state in σ is reachable with cost at most c, and other states may be reachable as
well.4

Simple valuations are convenient, since we can reuse our previous machinery (MRW ’07) for reasoning
with reachable sets represented as DNF (disjunctive normal form) logical formulae and HLA descriptions
specified in a language called NCSTRIPS (Nondeterministic Conditional STRIPS). NCSTRIPS is an exten-
sion of ordinary STRIPS that can express a set of possible effects with mutually exclusive conditions. Each
effect consists of four lists of propositions: add (+), delete (−), possibly-add (+̃), and possibly-delete (−̃).
Added propositions are always made true in the resulting state, whereas possibly-added propositions may or
may not be made true; in a pessimistic description, the agent can force either outcome, whereas in an opti-
mistic one the outcome may not be controllable. By extending NCSTRIPS with cost bounds (which can be
computed by arbitrary code), we produce descriptions suitable for the approach taken here. Figure 1(a) shows
possible descriptions for Go in this extended language (as is typically the case, these descriptions could be
made more accurate at the expense of conciseness by conditioning on features of the initial state).

With these representational choices, we require an algorithm for progressing a simple valuation repre-
sented as a DNF reachable set plus numeric cost bound through an extended NCSTRIPS description. If
we perform this progression exactly, the output may not be a simple valuation (since different states in the
reachable set may produce different cost bounds). Thus, we will instead consider an approximate progression
algorithm that projects results back into the space of simple valuations. Applying this algorithm repeatedly
will allow us to compute optimistic and pessimistic simple valuations for entire high-level sequences.

The algorithm is a simple extension of that given in (MRW ’07), which progresses each (conjunctive
clause, conditional effect) pair separately and then disjoins the results. This progression proceeds by (1)
conjoining effect conditions onto the clause (and skipping this clause if a contradiction is created), (2) making
all added (resp. deleted) literals true (resp. false), and finally (3) removing literals from the clause if false
(resp. true) and possibly-added (resp. possibly-deleted). With our extended NCSTRIPS descriptions, each
(clause, effect) pair also produces a cost bound. When progressing optimistic (resp. pessimistic) valuations,
we simply take the min (resp. max) of all these bounds plus the initial bound to get the cost bound for the
final valuation.5

Our above definitions need some minor modifications to allow for such approximate progression algo-
rithms. For simplicity, we will absorb any additional approximation into our notation for the descriptions
themselves:

Definition 9. An approximate progression algorithm corresponds to, for each extended optimistic and pes-
simistic description Ōa and P̄a, (further) approximated descriptions Õa and P̃a. Call the algorithm correct
if, for all actions a and valuations v, Õa(v) � Ōa(v) and P̄a(v) � P̃a(v).

Intuitively, a progression algorithm is correct as long as the errors it introduces only further weaken the
descriptions.

Theorem 3. Theorem 2 still holds if we use any correct approximate progression algorithm, replacing each
Ōa and P̄a with its further approximated counterpart Õa and P̃a.

The proof is similar to that of Theorem 2.

4. Offline Search Algorithms
This section describes algorithms for the offline planning setting, in which the objective is to quickly find a
low-cost sequence of actions leading all the way from s0 to t.

4. More interesting tractable classes of valuations are possible; for instance, rather than using a single numeric bound, we could allow
linear combinations of indicator functions on state variables.

5. A more accurate algorithm for pessimistic progression sorts the clauses by increasing pessimistic cost, computes the minimal prefix
of this list whose disjunction covers all of the remaining clauses, and then restricts the max over cost bounds to clauses in this prefix.
We did not implement this version, since it requires many potentially expensive subsumption checks.
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Nav01

Nav00
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D
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F
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Nav01

Figure 2: (a) A standard lookahead tree for our example. Nodes are labeled with states (written sxy(h/v))
and costs-so-far, edges are labeled with actions and associated costs, and leaves have a heuristic
estimate of the remaining distance-to-goal. (b) An abstract lookahead tree (ALT) for our example.
Nodes are labeled with optimistic and pessimistic simple valuations and edges are labeled with
(possibly high-level) actions and associated optimistic and pessimistic costs.

Because we have models for our HLAs, our planning algorithms will resemble existing algorithms that
search over primitive action sequences. Such algorithms typically operate by building a lookahead tree
(see Figure 2(a)). The initial tree consists of a single node labeled with the initial state and cost 0, and
computations consist of leaf node expansions: for each primitive action a, we add an outgoing edge labeled
with that action and its cost g(s, a), whose child is labeled with the state s′ = T (s, a) and total cost to s′. We
also include at leaf nodes a heuristic estimate h(s′) of the remaining cost to the goal. Paths from the root to a
leaf are potential plans; for each such plan a, we estimate the total cost of its best continuation by f(s0,a) =
g(s0,a) + h(T (s0,a)), the sum of its cost and heuristic value. If the heuristic h never overestimates, we
call it admissible, and this f -cost will also never overestimate. If h also obeys the triangle inequality h(s) ≤
g(s, a)+h(T (s, a)), we call it consistent, and expanding a node will always produce extensions with greater
or equal f -cost. These properties are required for A* and its graph version (respectively) to efficiently find
optimal plans.

In hierarchical planning we will consider algorithms that build abstract lookahead trees (ALTs). In
an ALT, edges are labeled with (possibly high-level) actions and nodes are labeled with optimistic and
pessimistic valuations for corresponding partial plans. For example, in the ALT in Figure 2(b), by doing
(Nav(0, 0), F, Go(0, 1)), state s01v is definitely reachable with cost in [5, 7], s01h may be reachable with
cost at least 5, and no other states are possibly reachable. Since our planning algorithms will try to find
low-cost solutions, we will be most concerned with finding optimistic (and pessimistic) bounds on the cost
of the best primitive refinement of each high-level plan that reaches t. These bounds can be extracted di-
rectly from the final ALT node of each plan; for instance, the optimistic and pessimistic costs to t of plan
(Nav(0, 0), F, Go(0, 1), Z) are [5, 7].

In a generalization of the ordinary notion of consistency, we will sometimes desire consistent HLA de-
scriptions, under which we never lose information by refining.6 As in the flat case, when descriptions are
consistent, the optimistic cost to t (i.e., f -cost) of a plan will never decrease with further refinement. Simi-
larly, its best pessimistic cost will never increase.

6. Specifically, a set of optimistic descriptions (plus approximate progression algorithm, if applicable) is consistent iff, when we
refine any high-level plan, its optimistic valuation dominates the optimistic valuations of its refinements. A set of pessimistic
descriptions (plus progression algorithm) is consistent iff the state-wise minimum of a set of refinements’ pessimistic valuations
always dominates the pessimistic valuation of the parent plan.
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We first describe our ALT data structures and how they address some of the issues that arise in our
hierarchical planning framework in novel ways. We then present our optimal planning algorithm, AHA*, and
briefly describe an alternative “satisficing” algorithm, AHSS.

4.1 Abstract Lookahead Trees

Our ALT data structures support our search algorithms by efficiently managing a set of candidate high-level
plans and associated valuations. The issues involved differ from the primitive setting because nodes store
valuations rather than single states and exact costs, and because (unlike node expansion) plan refinement is
“top-down” and may not correspond to simple extensions of existing plans.

Algorithm 1 shows pseudocode for some basic ALT operations. Our search algorithms work by first
creating an ALT containing some initial set of plans using MAKEINITIALALT, and then repeatedly refining
candidate plans using REFINEPLANEDGE, which only considers refinements whose preconditions are met
by at least one state in the corresponding optimistic reachable set. Both operations internally call ADDPLAN,
which adds a plan to the ALT by starting at the existing node corresponding to the longest prefix shared with
any existing plan, and creating nodes for the remaining plan suffix by progressing its valuations through the
corresponding action descriptions. In the process, partial plans that are provably dominated and plans that
cannot possibly reach the goal are recognized and skipped over.

Theorem 4. If a node n with optimistic valuation O(n) is created while adding plan a, and another node
n′ exists with pessimistic valuation P (n′) s.t. P (n′) � O(n) and the remaining plan suffix of a is a legal
hierarchical continuation from n′, then a is safely prunable.

Proof. We must show that if any primitive refinement of a is hierarchically optimal, then there exists a
primitive refinement of a plan passing through n′ that is hierarchically optimal as well (and thus we don’t
lose hierarchical optimality by pruning a). Suppose that b ∈ I∗(s0,a) is hierarchically optimal with cost
c. Decompose a into a1, the set of actions leading up to node n, and a2, the remainder of the actions in
a. Decompose b similarly, so that b1 ∈ I∗(s0,a1), and b2 ∈ I∗(s,a2), where s = T (s0,b1) and by
hierarchical optimality of b, T (s,b2) = t. Let c1 = g(s0,b1) and c2 = g(s,b2) so that c = c1 + c2. Now,
by the definition of optimistic descriptions, we must have O(n)(s) ≤ c1. Let c be the sequence of actions
leading up to n′. Because P (n′) � O(n), we must have P (n′)(s) ≤ c1. Thus, by definition of pessimistic
descriptions, there exists d ∈ I∗(s0, c) such that T (s0,d) = s and g(s0,d) ≤ c1. Finally, since a2 is
an allowed continuation from n′, concatenating d and b2 yields a primitive plan that reaches t, is a valid
hierarchical primitive refinement of a plan passing through n′, and has total cost ≤ c. Thus, either b was not
hierarchically optimal in the first place, or this new refinement of a plan passing through n′ is hierarchically
optimal as well.

Remark. The continuation condition is needed since the hierarchy might allow better continuations from
node n than n′.

For example, the plan (L, R, Nav(0, 1), Z) in Figure 2(b) is prunable since its optimistic valuation is dom-
inated by the pessimistic valuation above it, and the empty continuation is allowed from that node. Since
detecting all pruned nodes can be very expensive, our implementation only considers pruning for nodes with
singleton reachable sets.

One might wonder why REFINEPLANEDGE refines a single plan at a given HLA edge, rather than simul-
taneously refining all plans that pass through it. The reason is that after each refinement of the HLA, it would
have to continue progression for each such plan’s suffix. This could be needlessly expensive, especially if
some such plans are already thought to be bad.

In any case, when valuations are simple, we can use a novel improvement called upward propagation
(implemented in REFINEPLANEDGE) to propagate new information about the cost of a refined HLA edge
to other plans that pass through it, without having to explicitly refine them or do any additional progression.
This improvement hinges on the fact that with simple valuations, the optimistic and pessimistic costs for a
plan can be broken down into optimistic and pessimistic costs for each action in that plan (see Figure 2(b)).
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Algorithm 1 : Abstract lookahead tree (ALT) operations
function ADDPLAN(n, (a1, ..., ak))

for i from 1 to k do
if node n[ai] does not exist then

create n[ai] from n and the descriptions of ai

if n[ai] is prunable via Theorem 4 then return
n← n[ai]

if O(n)(t) <∞ then mark n as a valid refinable plan

function MAKEINITIALALT(s0, plans)
root← a new node with O(root) = P (root) = v0

for each plan ∈ plans do ADDPLAN(root, plan)
return root

function REFINEPLANEDGE(root, (a1, ..., ak), i)
mark node root[a1]...[ak] as refined
for (b1...bj)∈I(ai) w/ preconditions met by some O(root[a1]...[ai−1]) do

ADDPLAN(root, (a1, ..., ai−1, b1, ..., bj , ai+1, ..., ak))

(o, p)← (min, max) of the (optimistic, pessimistic) costs of ai’s refs
ai’s optimistic cost ←max(current value, o) /* upward */
ai’s pessimistic cost←min(current value, p) /* propagation */

Theorem 5. The min optimistic cost of any refinement of HLA a is a valid optimistic cost for a’s current
optimistic reachable set, and when pessimistic descriptions are consistent, the max such pessimistic cost is
similarly valid.

Proof. First consider optimistic valuations. Define v = (σ, c) to be the optimistic valuation just before the
HLA a being refined, and b1, ...,bn be the immediate refinements of a in this context. Let va be the valuation
resulting from doing a from v, and vb1 , ..., vbn

be the valuations after doing each bi. (Each of these vi’s is a
simple valuation, and has a corresponding σi and ci.)

Now, a optimistic simple valuation asserts that no states outside the reachable set are possibly reachable,
and states in the reachable set are reachable with cost no less than c. This implies that no states in the exact
reachable set are reachable with cost less than c. Now, recall that every primitive refinement of the parent plan
is a primitive refinement of at least one of its immediate refinements. Thus, the cost to reach each actually
reachable state is lower bounded by at least one of the refinements’ optimistic valuations. Thus, the minimum
cost of any such valuation is a valid optimistic cost for the original reachable set.

For pessimistic simple valuations, things are a little more complicated. Recall that a pessimistic simple
valuation asserts that each state in the pessimistic set is reachable with cost at most c. This cost statement is
not equivalent to a statement about the exact reachable set as in the optimistic simple valuation case. Thus,
for things to work we must require consistent pessimistic descriptions as well.

With the consistency requirement, we have that the union of the pessimistic reachable sets for the re-
finements must be a superset of the pessimistic reachable set of the parent plan. Thus, every state claimed
to be reachable by the parent plan is claimed to be reachable by one of the refinements, with at most some
cost. Thus, the maximum cost of any refinement’s simple valuation is a valid pessimistic cost for the parent’s
current reachable set.7

Thus, upon refining an HLA edge, we can tighten its cost interval to reflect the cost intervals of its
immediate refinements, without modifying its reachable sets. This results in better cost bounds for all other

7. A more accurate but expensive algorithm is possible for propagating pessimistic costs; see footnote 5 for details.
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plans that pass through this HLA edge, without needing to do any additional progression computations for
(the suffixes of) such plans.8

4.2 Angelic Hierarchical A*

Our first offline algorithm is Angelic Hierarchical A* (AHA*), a hierarchically optimal planning algorithm
that takes advantage of the semantic guarantees provided by optimistic and pessimistic descriptions. AHA*
(see Algorithm 2) is essentially A* in refinement space, where the initial node is the plan (Act), possible
“actions” are refinements of a plan at some HLA, and the goal set consists of the primitive plans that reach t
from s0. The algorithm repeatedly expands a node with smallest optimistic cost bound, until a goal node is
chosen for expansion, which is returned as an optimal solution.

More concretely, at each step AHA* selects a high-level plan a with minimal optimistic cost to t (e.g.,
the bottom plan in Figure 2(b)). Then it refines a, selecting some HLA a and adding to the ALT all plans
obtained from a by replacing a with one of its immediate refinements.

We will make the technical assumption that for every c, there are only finitely many high-level plans with
optimistic cost less than c. This is essentially a positive-cost-cycle condition on the optimistic costs, and is
not hard to ensure in practice. Under this assumption, we have the following theorem.

Theorem 6. AHA* eventually terminates, and returns a hierarchically optimal plan.

Proof. We will show that at the beginning of each iteration of the loop, the lookahead tree contains a plan b
which can be refined to an hierarchically optimal primitive plan. This is certainly true at the first iteration.
By induction, suppose it is true at the kth iteration. Now, if there exists such a plan that is not chosen for
refinement, then it will continue to be in the tree on the next iteration. So we only need to worry about the
case when there is a unique such plan, and it is chosen for refinement. By definition, no matter which action
in the plan is refined, at least one refinement will continue to be refinable to an optimal plan. By Theorem 4,
the first such refinement added to the tree will not be pruned.

In particular, the invariant above holds when the loop terminates. At this point, the returned plan has
optimistic cost lower than all other plans in the tree. Since its own optimistic cost is exact (as it is primitive),
it in fact has minimal cost among all refinements of plans currently in the tree, and is therefore hierarchically
optimal.

Finally, by assumption on the optimistic costs, all plans whose cost is at most the optimal cost will
eventually be considered, including the hierarchically optimal one, which is primitive. Thus the algorithm
eventually terminates.

We now make concrete the connection between AHA* and standard A* search. AHA* clearly differs
from A* over the state space, since the set of candidate plans and expansion operations differ. However, it is
closely related to A* or greedy best-first search in the space of abstract plans. This search space consists of
all sequences of high-level or primitive actions together with a dummy terminal state t. The initial state is the
plan Act. Given a rule for choosing which HLA of a given plan to refine next, the successors of a nonprimitive
plan are obtained by substituting the refinements of that HLA into the original plan, and the associated cost is
0. A primitive plan’s only successor is the terminal state, and this move’s cost equals the cost of the primitive
plan. The heuristic value of a plan is its optimistic cost.

Theorem 7. If the optimistic descriptions are consistent, then the sequence of plans refined by AHA* (without
upward propagation) is a subsequence of the sequence of plans expanded by A* over the corresponding plan
space, for some sequence of tiebreaking choices.

Proof. Let a1, . . . ,ak be the sequence of plans refined by AHA*, and St its set of unrefined plans at step
t. We show inductively the stronger statement that we can construct tiebreaking choices for A* such that

8. Note that changing the costs renders the valuations stored at descendants of the refined edge out-of-date. The plan selection step of
AHA* can nevertheless be done correctly, by storing “Q-values” of each edge in the tree, and backing up Q-values up to the root
whenever upward propagation is done. With a little extra bookkeeping, upward propagation can even be carried out recursively:
updates to the cost of an HLA can result in better bounds for its parent HLA, and so on.
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Algorithm 2 : Angelic Hierarchical A*
function FINDOPTIMALPLAN(s0, t)

root← MAKEINITIALALT(s0, {(Act)})
while ∃ an unrefined plan do

a← plan with min optimistic cost to t (tiebreak by pessimistic cost)
if a is primitive then return a
REFINEPLANEDGE(root,a, index of any HLA in a)

return failure

if b1, . . . ,bl denotes its sequence of expanded plans and S′
t denotes its open list at step t, there exist times

1 = t1 < . . . < tk = l such that ai = bti
and Si ⊆ S′

ti
. The statement is clearly true for t1. Consider step i

of AHA*, which corresponds to step ti of A*. Following this step, the unrefined plans in the ALT are Si+1.
At this point, the plan ai+1 is tied for the lowest cost in Si+1. S′

ti+1 contains this plan, and possibly other ones
with lower cost. However, none of those can be in Si+1. We can therefore, by making appropriate tiebreaking
choices in A*, ensure that, if ti+1 is the next time at which A* expands a plan in Si+1, bti+1 = ai+1, and
furthermore, Si+1 ⊆ S′

ti+1
, completing the induction.

While AHA* might thus seem like an obvious generalization of A* to the hierarchical setting, we believe
that it is an important contribution for several reasons. First, its effectiveness hinges on our ability to generate
nontrivial cost bounds for high-level sequences, which did not exist previously. Second, it derives additional
power from our ALT data structures, which provide caching, pruning, and other novel improvements specific
to the hierarchical setting.

The only free parameter in AHA* is the choice of which HLA to refine in a given plan; our implementation
chooses an HLA with maximal gap between its optimistic and pessimistic costs (defined below), breaking
ties towards higher-level actions.

Finally, we note that with consistent descriptions, as soon as AHA* finds an optimal high-level plan with
equal optimistic and pessimistic costs, it will find an optimal primitive refinement very efficiently. Consis-
tency ensures that after each subsequent refinement, at least one of the resulting plans will also be optimal
with equal optimistic and pessimistic costs; moreover, all but the first such plan will be pruned. Further
refinement of this first plan will continue until an optimal primitive refinement is found without backtracking.

4.3 Angelic Hierarchical Satisficing Search

This section presents an alternative algorithm, Angelic Hierarchical Satisficing Search (AHSS), which at-
tempts to find a plan that reaches the goal with at most some pre-specified cost α. AHSS can be much more
efficient than AHA*, since it can commit to a plan without first proving its optimality.

At each step, AHSS (see Algorithm 3) begins by checking if any primitive plans succeed with cost ≤ α.
If so, the best such plan is returned. Next, if any (high-level) plans succeed with pessimistic cost ≤ α, the
best such plan is committed to by discarding other potential plans. Finally, a plan with maximum priority
is refined at one of its HLAs. Priorities can be assigned arbitrarily; our implementation uses the negative
average of optimistic and pessimistic costs, to encourage a more depth-first search and favor plans with
smaller pessimistic cost.

Theorem 8. If there exist primitive plans consistent with the hierarchy, with cost ≤ α, AHSS eventually
returns one of them. Otherwise, it eventually returns failure.

Proof. The algorithm eventually terminates since there are only finitely many plans with optimistic cost≤ α.
Since optimistic costs are exact for primitive plans, it will never falsely report success. Suppose there do exist
primitive plans with cost ≤ α. It suffices to show that at the beginning of each iteration, the tree contains
a plan one of whose primitive refinements has cost ≤ α. The invariant holds by assumption at the first
iteration. Suppose it is true at the beginning of the kth iteration. It will continue to hold after the if-statement,
by definition of pessimistic costs. We only need to consider the case when there is a single such plan in the
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Algorithm 3 : Angelic Hierarchical Satisficing Search
function FINDSATISFICINGPLAN(s0, t, α)

root← MAKEINITIALALT(s0, {Act})
while ∃ an unrefined plan with optimistic cost ≤ α to t do

if any plan has pessimistic cost ≤ α to t then
if any such plans are primitive then return a best one
else delete all plans other than one with min pessimistic cost

a← a plan with optimistic cost ≤ α to t with max priority
REFINEPLANEDGE(root,a, index of any HLA in a)

return failure

tree after the if-statement, and it is selected for refinement. Regardless of which action in the plan is refined,
one of the refinements will also have a primitive refinement with cost ≤ α. At least one such refinement will
not be pruned. Thus the invariant holds at the next iteration.

5. Online Search Algorithms
In the online setting, an agent must begin executing actions without first searching all the way to the goal.
The agent begins in the initial state s0, performs a fixed amount of computation, then selects an action a.9 It
then does this action in the environment, moving to state T (s0, a) and paying cost g(s0, a). This continues
until the goal state t is reached. Performance is measured by the total cost of the actions executed. We assume
that the state space is safely explorable, so that the goal is reachable from any state (with finite cost), and also
assume positive action costs and consistent heuristics/descriptions from this point forward.

This section presents our next contribution, one of the first hierarchical lookahead algorithms. Since it
will build upon a variant of Korf’s (1990) Learning Real-Time A* (LRTA*) algorithm, we begin by briefly
reviewing LRTA*.10

At each environment step, LRTA* uses its computation time to build a lookahead tree consisting of all
plans a whose cost g(s0,a) just exceeds a given threshold. Then, it selects one such plan amin with minimal
f -cost and does its first action in the world. Intuitively, looking farther ahead should increase the likelihood
that amin is actually good, by decreasing reliance on the (error-prone) heuristic. The choice of candidate
plans is designed to compensate for the fact that the heuristic h is typically biased (i.e., admissible) whereas
g is exact, and thus the f -cost of a plan with higher h and lower g may not be directly comparable to one with
higher g and lower h.

This core algorithm is then improved by a learning rule. Whenever a partial plan a leading to a previously-
visited state s is encountered during search, further extensions of a are not considered; instead, the remaining
cost-to-goal from s is taken to be the value computed by the most recent search at s. This augmented
algorithm has several nice properties:

Theorem 9. (Korf, 1990) If g-costs are positive, h-costs are finite, and the state space is finite and safely
explorable, then LRTA* will eventually reach the goal.

Theorem 10. (Korf, 1990) If, in addition, h is admissible and ties are broken randomly, then given enough
runs, LRTA* will eventually learn the true cost of every state on an optimal path, and act optimally thereafter.

However, as described thus far, LRTA* has several drawbacks. First, it wastes time considering obviously
bad plans. (Korf prevented this with “alpha pruning”). Second, a cost threshold must be set in advance, and
picking this threshold so that the algorithm uses a desired amount of computation time may be difficult. Both
drawbacks can solved using the following adaptive LRTA* algorithm, a relative of Korf’s “time-limited A*”:
(1) Start with the empty plan. (2) At each step, select an unexpanded plan with lowest f -cost. If this plan has

9. More interesting ways to balance real-world and computational cost are possible, but this suffices for now.
10. To be precise, Korf focused on the case of unit action costs; we present the natural generalization to positive real-valued costs.
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greater g-cost than any previously expanded plan, “lock it in” as the current return value. Expand this plan.
(3) When computation time runs out, return the current “locked-in” plan.

Theorem 11. At any point during the operation of this algorithm, let a be the current locked-in plan, c2 be its
corresponding “record-setting” g-cost, and c1 be the previous record g-cost (c1 < c2). Given any threshold
in [c1, c2), LRTA* would choose a for execution (up to tiebreaking).

Proof. First, note that given any threshold c ∈ [c1, c2), LRTA* would definitely have constructed and ex-
panded all of the ancestors of a. Consider any ancestor of a. By consistency and positive action costs, it
must have≤ g-cost and f -cost than a. Because a was “record-setting”, the g-cost must actually be strictly <.
Now, suppose that this ancestor was not expanded. Then, its g-cost must be > c. But, c1 < c was the previous
record-setting cost, so we have a contradiction. Thus, LRTA* would have generated but not expanded a.

Now, suppose that LRTA* with threshold c chooses some other plan over a for execution. This plan must
have cost > c to be present and unexpanded, and f -cost < that of a to be selected. But, if this was the case,
this plan would have been selected for expansion by the adaptive algorithm before a, and would have been
the previous record-setting plan. But, its cost is > c ≥ c1, the cost of the previous record-setting plan, a
contradiction.

Thus, this modified algorithm can be used as an efficient, anytime version of LRTA*. Since its behavior
reduces to the original version for a particular (adaptive) choice of cost thresholds, all of the properties of
LRTA* hold for it as well.

5.1 Angelic Hierarchical Learning Real-Time A*

This section describes Angelic Hierarchical Learning Real-Time A* (AHLRTA*, see Algorithm 4), which
bears (roughly) the same relation to adaptive LRTA* as AHA* does to A*. Because a single HLA can
correspond to many primitive actions, for a given amount of computation time we hope that AHLRTA* will
have a greater effective lookahead depth than LRTA*, and thus make better action choices. However, a
number of issues arise in the generalization to the hierarchical setting that must be addressed to make this
basic idea work in both theory and practice.

First, while AHLRTA* searches over the space of high-level plans, when computation time runs out it
must choose a primitive action to execute. Thus, if the algorithm initializes its ALT with the single plan (Act),
it will have to consider its refinements carefully to ensure that in its final ALT, at least one of the (hopefully
better) high-level plans begins with an executable primitive. To avoid this issue (and to ensure convergence
of costs, as described below), we instead choose to initialize the ALT with the set of all plans consisting of
a primitive action followed by Act.11 With this set of plans, the choice of which HLA to refine in a plan is
open; our implementation uses the policy described above for AHA*.

Second, as we saw earlier, an analogue of f -cost can be extracted from our optimistic valuations. How-
ever, there is no obvious breakdown of f into g and h components, since a high-level plan can consist of
actions at various levels, each of whose descriptions may make different types and degrees of characteristic
errors. For now, we assume that a set of higher-level HLAs (e.g., Act and Go) has been identified, let h be the
sum of the optimistic costs of these actions, and let g = f − h be the cost of the primitives and remaining
HLAs.

Finally, whereas the outcome of a primitive plan is a particular concrete state whose stored cost can be
simply looked up in a hash table, the optimistic valuations of a high-level plan instead provide a sequence
of reachable sets of states. In general, for each such set we could look up and combine the stored costs of
its elements; instead, however, for efficiency our implementation only checks for stored costs of singleton
optimistic sets (e.g., those corresponding to a primitive prefix of a given high-level plan). If the state in
a constructed singleton set has a stored cost, progression is stopped and this value is used as the cost of

11. Note that with this choice, the plans considered by the agent may not be valid hierarchical plans (i.e., refinements of Act). However,
since the agent can change its mind on each world step, the actual sequence of actions executed in the world is not in general
consistent with the hierarchy anyway.
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Algorithm 4 : Angelic Hierarchical Learning Real-Time A*
function HIERARCHICALLOOKAHEADAGENT(s0, t)

memory ← an empty hash table
while s0 6= t do

root← MAKEINITIALALT(s0, {(a, Act) | a ∈ L})
(g, a, f)← (−1, nil, 0)
while ∃ unrefined plans from root ∧ time remains do

a← a plan w/ min f -cost
if the g-cost of a > g then

(g,a,f)← (g-cost of a, a1, f -cost of a)

REFINEPLANEDGE(root,a, some index, memory)

do a in the world
memory[s0]← f
s0 ← T (s0, a)

the remainder of the plan. This functionality is added by modifying REFINEPLANEDGE and ADDPLAN
accordingly (not shown).

Given all of these choices, we have the following:

Theorem 12. AHLRTA* reduces to adaptive LRTA*, given a “flat” hierarchy in which Act refines to any
primitive action followed by Act (or the empty sequence).

Proof. Trivial; simply note that refining a plan in the “flat” hierarchy is the same as expanding a plan in the
primitive LRTA* setting.

(In fact, this is how we have implemented LRTA* for our experiments.) Moreover, the desirable prop-
erties of LRTA* also hold for AHLRTA* in general hierarchies. This follows because AHLRTA* behaves
identically to LRTA* in neighborhoods in which every state has been visited at least once.

Theorem 13. If primitive g-costs are positive, f -costs are finite, and the state space is finite and safely
explorable, then AHLRTA* will eventually reach the goal.

Proof. Simply note that AHLRTA* is actually equivalent to LRTA* with depth 1, where the “heuristic” is
computed by a limited hierarchical search from each next state reachable by some primitive action.

Theorem 14. If, in addition, f -costs are admissible, ties are broken randomly, and the hierarchy is optimality-
preserving, then over repeated trials AHLRTA* will eventually learn the true cost of every state on an optimal
path and act optimally thereafter.

Proof. Same as previous theorem.

If f-costs are inadmissible or the hierarchy is not optimality-preserving, the theorem still holds if s0 is
sampled from a distribution with support on S in each trial.

Our implementation of AHLRTA* includes two minor changes from the version described above, which
we have found to increase its effectiveness. First, it sometimes throws away some of its allowed computation
time, so that the number of refinements taken per allowed initial primitive action is constant; this tends to
improve the interaction of the lookahead strategy with the learning rule. Second, when deciding when to
“lock in” a plan it requires additionally that the plan is more refined than the previous locked in plan; this
helps counteract the implicit bias towards higher-level plans caused by aggregation of costs from primitives
and various HLAs into g-cost. Since both changes effectively only change the stopping time of the algorithm,
its desirable properties are preserved.
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6. Experiments
This section describes results for the above algorithms on two domains: our “nav-switch” running example,
and the warehouse world (MRW ’07).12

The warehouse world is an elaboration of the well-known blocks world, with discrete spatial constraints
added. In this domain, a forklift-like gripper hanging from the ceiling can move around and manipulate
blocks stacked on a table. Both gripper and blocks occupy single squares in a 2-d grid of allowed positions.
The gripper can move to free squares in the four cardinal directions, turn (to face the other way) when in the
top row, and pick up and put down blocks from either side. Each primitive action has unit cost. Because
of the limited maneuvering space, warehouse world problems can be rather difficult. For instance, Figure 3
shows a problem that cannot be solved in fewer than 50 primitive steps. The figure also shows our HLAs for
the domain, which we use unchanged from (MRW ’07) along with the NCSTRIPS descriptions therein (to
which we add simple cost bounds). We consider six instances of varying difficulty.

For the nav-switch domain, we consider square grids of varying size with 3 randomly placed switches,
where the goal is always to navigate from one corner to the other. We use the hierarchy and descriptions
described above.

We first present results for our offline algorithms on these domains (see Table 1). On the warehouse world
instances, nonhierarchical (flat) A* does reasonably well on small problems, but quickly becomes impractical
as the optimal plan length increases. AHA* is able to plan optimally in larger problems, but for the largest
instances, it too runs out of time. The reason is that it must not only find the optimal plan, but also prove that
all other high-level plans have higher cost. In contrast, AHSS with a threshold of ∞ is able to solve all the
problems fairly quickly.

We also included, for comparison, results for the Hierarchical Forward Search (HFS) algorithm (MRW
’07), which does not consider plan cost. When passed a threshold of ∞, AHSS has the same objective
as HFS: to find any plan from s0 to t with as little computation as possible. However, AHSS has several
important advantages over HFS. First, its priority function serves as a heuristic, and usually results in higher-
quality plans being found. Second, AHSS is actually much simpler. In particular, whereas HFS required
iterative deepening, cycle checking, and a special plan decomposition mechanism to ensure completeness and
efficiency, the use of cost information allows AHSS to naturally reap the same benefits without needing any
such explicit mechanisms. Finally, the abstract lookahead tree data structure provides caching and decreases
the number of NCSTRIPS progressions required. Due to these improvements, HFS is slightly slower than
the optimal planner AHA*, and a few orders of magnitude slower than AHSS.

On the nav-switch instances, results are qualitatively similar. Again, flat A* quickly becomes impractical
as the problem size grows. However, in this domain, AHA* actually performs very well, almost matching the
performance of AHSS. The reason is that in this domain, the descriptions for Nav are exact, and thus AHA*
can very quickly find a provably optimal high-level plan and refine it down to the primitive level without
backtracking, as described earlier.

The obvious next step would be to compare AHA* with other optimal hierarchical planners, such as
SHOP2 on its “optimal” setting. However, this is far from straightforward, for several reasons. First, useful
hierarchies are often not optimality-preserving, and it is not at all obvious how we should compare different
“optimal” planners that use different standards for optimality. Second, as described in the related work section
below, the type and amount of problem-specific information provided to our algorithms can be very different
than for HTN planners such as SHOP2. We have yet to find a way to perform meaningful experimental
comparisons under these circumstances.

For the online setting, we compared (flat) LRTA* and AHLRTA*. The performance of an online algorithm
on a given instance depends on the number of allowed refinements per step. Our graphs therefore plot total
cost against refinements per step for LRTA* and AHLRTA*. AHLRTA* took about five times longer per
refinement than LRTA* on average, though this factor could probably be decreased by optimizing the DNF
operations.13

12. Our code and data are available at http://www.cs.berkeley.edu/∼jawolfe/angelic/
13. It cannot be completely avoided because refinements for the hierarchical algorithms require multiple progressions.
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HLA Goal
Act Achieve goal by seq. of Moves
Move(b, c) Stack block b on c by NavT to

one side of b, pick it up, NavT to
one side of c, put b down.

NavT(x, y) Go to (x, y), possibly turning
Nav(x, y) Go directly to (x, y)

Figure 3: Left: A 4x4 warehouse world problem with goal ON(c, t2) ∧ ON(a, c). Right: HLAs for warehouse
world domain.

nav-switch
sz A* AHA* AHSS
5 0 0 0

10 22 1 1
20 176 3 3
40 – 40 40

warehouse world
# A* AHA* AHSS HFS
1 1 0 0 1
2 9 4 2 12
3 – 63 9 135
4 – 526 27 –
5 – – 60 –
6 – – 48 –

Table 1: Run-times of offline algorithms, rounded to the nearest second, on some nav-switch and warehouse
world problem instances. The algorithms are (flat) graph A*, AHA*, AHSS with threshold α=∞,
and HFS from (MRW ’07). Algorithms were terminated if they failed to return within 104 seconds
(shown as “–”).

The left graph of Figure 4 is averaged across three instances of the nav-switch world. This domain is
relatively easy as an online lookahead problem, because the Manhattan-distance heuristic for Act always
points in roughly the right direction. In all cases, the hierarchical agent behaved optimally given about 50
refinements per step. With this number of refinements, the flat agent usually followed a reasonable, though
suboptimal plan. But it did not display optimal behavior, even when the number of refinements per step was
increased to 1000.

The right graph in Figure 4 shows results averaged across three instances of the warehouse world. This
domain is more challenging for online lookahead, as the combinatorial structure of the problem makes the Act
heuristic less reliable. AHLRTA* started to behave optimally given a few hundred refinements per step. In
contrast, flat lookahead was very suboptimal (note that the y-axis is on a log scale), even given five thousand
refinements.

Here are some qualitative phenomena we observed on the experiments (data available at paper website).
First, as the number of refinements increased, AHLRTA* reached a point where it found a provably optimal
primitive plan on each environment step. But it also had reasonable behavior when the number of refinements
did not suffice to find a provably optimal plan (the left portion of the right-hand graph), in that the “intended”
plan at each step typically consisted of a few primitive actions followed by increasingly high-level actions,
and this intended plan was usually reasonable at the high level. Second, when very few refinements (< 50)
were allowed per step, AHLRTA* actually did worse than LRTA* on (a single instance of) the nav-switch
world. While we do not completely understand the cause, what seems to be happening is that in the regime of
very little deliberation time per step, lookahead pathologies and the LRTA* learning rule interact in complex
ways, often causing the agent to spend long periods of time “filling out” local minima of the heuristic function
in the state space.14 This phenomenon is further complicated in the hierarchical case by the fact that the cost
bounds for different HLAs tend to be systematically biased in different ways (for example, the optimistic
bound for Nav is nearly exact, while the bound for Move tends to underestimate by a factor of two). Improved

14. This is also why the LRTA* curve in the warehouse world is non-monotonic.
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Figure 4: Total cost-to-goal for online algorithms as a function of the number of allowed refinements per en-
vironment step, averaged over three instances each of the nav-switch domain (left) and warehouse
world (right). (Warehouse world costs shown in log-scale.)

online lookahead algorithms that degrade gracefully in such situations, even given very little deliberation
time, are an interesting topic for future work.

7. Related Work
We briefly describe work related to our specific contributions, deferring to (MRW ’07) for discussion of
relationships between this general line of work and previous approaches.

Most previous work in hierarchical planning (Tate, 1977; Yang, 1990; Russell and Norvig, 2003) has
viewed HLA descriptions (when used at all) as constraints on the planning process (e.g., “only consider
refinements that achieve p”), rather than as making true assertions about the effects of HLAs. Such HTN
planning systems, e.g., SHOP2 (Nau et al., 2003), have achieved impressive results in previous planning
competitions and real-world domains—despite the fact that they cannot assure the correctness or bound the
cost of abstract plans. Instead, they encode a good deal of domain-specific advice on which refinements to
try in which circumstances, often expressed as arbitrary program code. For fairly simple domains described
in tens of lines of PDDL, SHOP2 hierarchies can include hundreds or thousands of lines of Lisp code. In
contrast, our algorithms only require a (typically simple) hierarchical structure, along with descriptions that
logically follow from (and are potentially automatically derivable from) this structure.

The closest work to ours is by Doan and Haddawy (1995). Their DRIPS planning system uses action
abstraction along with an analogue of our optimistic descriptions to find optimal plans in the probabilistic
setting. However, without pessimistic descriptions, they can only prove that a given high-level plan satisfies
some property when the property holds for all of its refinements, which severely limits the amount of pruning
possible compared to our approach. Helwig and Haddawy (1996) extended DRIPS to the online setting. Their
algorithm did not cache backed-up values, and hence cannot guarantee eventual goal achievement, but it was
probably the first principled online hierarchical lookahead agent.

Several other works have pursued similar goals to ours, but using state abstraction rather than HLAs.
Holte et al. (1996) developed Hierarchical A*, which uses an automatically constructed hierarchy of state
abstractions in which the results of optimal search at each level define an admissible heuristic for search at
the next-lower level. Similarly, Bulitko et al. (2007) proposed the PR LRTS algorithm, a real-time algorithm
in which a plan discovered at each level constrains the planning process at the next-lower level.

Finally, other works have considered adding pessimistic bounds to the A* (Berliner, 1979) and LRTA*
(Ishida and Shimbo, 1996) algorithms, to help guide search and exploration as well as monitor convergence.
These techniques may also be useful for our corresponding hierarchical algorithms.
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8. Discussion
We have presented several new algorithms for hierarchical planning with promising theoretical and empirical
properties. There are many interesting directions for future work, such as developing better representations
for descriptions and valuations, automatically synthesizing descriptions from the hierarchy, and generalizing
domain-independent techniques for automatic derivation of planning heuristics to the hierarchical setting.
One might also consider extensions to partially ordered, probabilistic, and partially observable settings, and
better online algorithms that, e.g., maintain more state across environment steps.
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